Notes on Threshold EdDSA/Schnorr Signatures

Luís Brandão *

Talk at the NIST Crypto Reading Club August 10, 2022 @ Maryland, USA

Joint work (NIST IR 8214B Draft) with **Michael Davidson** Slide-deck in progress. Feedback is welcome.

^{*} Strativia (At NIST as a Foreign Guest Researcher, Contractor not employed by NIST). Expressed opinions are from the speaker, not to be construed as official NIST views.

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

Outline

1. Conventional EdDSA/Schnorr

Threshold signatures

3. Consideration

Digital signatures — FIPS Pub 186-5 (Draft)

- ► FIPS: Federal Information Processing Standards Publication
- Digital Signature Standard (DSS)
- ▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
- ► EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov

Digital signatures — FIPS Pub 186-5 (Draft)

- ► FIPS: Federal Information Processing Standards Publication
- Digital Signature Standard (DSS)
- ▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
- ► EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov

A signature scheme: (Keygen, Sign, Verify), based on public-key cryptography

Digital signatures — FIPS Pub 186-5 (Draft)

- ► FIPS: Federal Information Processing Standards Publication
- Digital Signature Standard (DSS)
- ▶ 3 families of signature schemes: RSA, ECDSA, EdDSA
- ► EdDSA is the most recent (based on RFC 8032)

NIST name and address plate (source: nist.gov

A signature scheme: (Keygen, Sign, Verify), based on public-key cryptography

"Digital signatures are used to <u>detect unauthorized modifications to data</u> and to <u>authenticate the identity</u> of the signatory." ... "<u>non-repudiation</u> since the signatory cannot easily repudiate the signature at a later time."

For later: "unforgeability" and "binding"

Notation for group operations

Multiplicative notation (traditional for finite fields):

Public key $Q = g^s$, where:

- ▶ g is a generator of order n; s is the private key in \mathbb{Z}_n
- ► Assumption: infeasibility of computing discrete-logs (base g)

Additive notation (usual with elliptic curves):

Public key $Q = s \cdot G$, where:

- ▶ G is a base-point of order n; s is the private key in \mathbb{Z}_n
- lacktriangle Assumption: cannot calculate the integer quotient from division with G

Let us proceed with additive notation

EdDSA-style scheme (simplified)

- Keygen[n]: { (private key) $s \leftarrow \mathbb{Z}_n$; (public key) $Q = s \cdot G$; output (s,Q) }.
- Sign[s](M): { $r \leftarrow \text{GenNonce}(...)$; $R = r \cdot G$; $\chi = H(R, Q, M)$; $S = r + \chi \cdot s \pmod{n}$; output $\sigma = (R, S)$ }.
- Verify[Q](M, σ): { $\chi' = H(R,Q,M)$; output accept iff $S \cdot G = R + \chi' \cdot Q$ }

Legend: χ (challenge); G (base point, i.e., generator of \mathbb{G}); GenNonce(...) (procedure used to **gen**erate the secret nonce); M (message being signed); n (order of the group generated by G); Q (public key); r (secret nonce); R (nonce commitment; first component of the signature); s (private signing key; in the detailed scheme it is obtained as a digest — hdigest1 — of a precursor private key d); s (second component of the signature); s (signature); s (random sampling); s (integer sum and multiplication); s (sum and multiplication-by-constant in additive group s).

Schnorr-style [Sch90; BDLSY11]: simple, efficient, some variations (but rationale is similar)

The EdDSA signature formula $\sigma = (R, S)$

Note: The HashEdDSA mode pre-hashes the message

The EdDSA signature formula $\sigma = (R, S)$

Note: The HashEdDSA mode pre-hashes the message

Verification:
$$0 \le S \le n \quad \land \quad S' \cdot G = R' + \chi' \cdot Q \quad \text{(note that } = r \cdot G + \chi \cdot (s \cdot G)\text{)}$$

The EdDSA signature formula $\sigma = (R, S)$

Nonce "commitment"
$$R = r \cdot G$$

Secret nonce $r = H(v, M)$

EdDSA signature $\longrightarrow \sigma = (r \cdot G, r + H(R, Q, M) \cdot S)$

Private signing key

Base point (generator of order n)

Message being signed

"Challenge" $\chi = H(R, Q, M)$

Note: The HashEdDSA mode pre-hashes the message

$$\text{Verification: } 0 \leq \textit{S} \leq \textit{n} \quad \land \quad \textit{S'} \bullet \textit{G} = ? \textit{R'} + \chi' \bullet \textit{Q} \quad \text{(note that } = \textit{r} \bullet \textit{G} + \chi \bullet (\textit{s} \bullet \textit{G}) \text{)}$$

Where
$$S'=2^c \cdot S$$
, $R'=2^c \cdot R$, $\chi'=2^c \cdot \chi$ (a.k.a. cofactored verification)

Unforgeability

Unforgeability (UF): Malicious client cannot win the following game:

- lacktriangle Client (with access to signing oracle) gets q message—signature pairs (M_i, σ_i)
- lacktriangle Client (without oracle) produces a valid sig σ^* for a new message M^*

EUF-CMA: existential unforgeability against chosen message attack [GMR88]

Strong UF (SUF): cannot find new pair (σ^*, M^*) (even if msg was already signed) [CD95]

Unforgeability

Unforgeability (UF): Malicious client cannot win the following game:

- lacktriangle Client (with access to signing oracle) gets q message—signature pairs (M_i, σ_i)
- lacktriangle Client (without oracle) produces a valid sig σ^* for a new message M^*

EUF-CMA: existential unforgeability against chosen message attack [GMR88]

Strong UF (SUF): cannot find new pair (σ^*, M^*) (even if msg was already signed) [CD95]

Technical note (feel free to ignore):

- ▶ A signature is like a ZKP of knowledge of the signing key (e.g., discrete-log).
- Usually provable with rewinding, when interactive (random challenge each time).
- ▶ Non-interactive case: random oracle model / forking lemma.

Binding

Now suppose the signer is the malicious party (adv)

Binding (to message): Can adv repudiate having signed a msg M?

- ▶ If UF, and bound to public key Q, then it cannot
- ▶ Unless it finds a hash collision $\chi = H(R, Q, M) = H(R, Q, M')$

Strong binding (to message/pubkey): What if adv can lie about the public key *Q*?

- ▶ Can it find two pairs (M, Q) and (M^*, Q^*) and a signature σ valid for both?
- lt can (details omitted here), if one key is *invalid* (but there's no check for it)

EdDSA would be strong binding (resistant to key-substitution attack):

• if additionally checking $|Q|>2^c$ [BCJZ21; CGN20]

Nonce implementation issues

Nonce reuse: Suppose the nonce r is reused when EdDSA-signing different messages.

- lacksquare $\sigma = (R, S)$, where $S = r + \chi \cdot s$ and $\chi = H(...M)$
- $lackbox{} \sigma^* = (R,S^*)$, where $S^* = r + \chi^* \cdot s$ and $\chi^* = H(...M')$

Then the private key s follows from solving a pair of linear equations with two unknowns

- $s = (S^* S) \cdot (\chi^* \chi)^{-1} \pmod{n}$

It gets worst:

- Even a small nonce-bias (partial knowledge) allows key recovery
- ► Nonce reuse/bias is also catastrophic for ECDSA

Comparing types of nonce generation

EdDSA specifies pseudorandom nonce generation $r = H(\nu, M)$, which:

avoids nonce-bias, but is more susceptible to some side-channel attacks

If recovering ν , then from a message-signature pair can compute the signing key s:

 $ightharpoonup s = \chi^{-1} \cdot (S - r) \pmod{n}$, where $r = H(\nu, M)$

Comparing types of nonce generation

EdDSA specifies pseudorandom nonce generation $r = H(\nu, M)$, which:

▶ avoids nonce-bias, but is more susceptible to some side-channel attacks

If recovering ν , then from a message-signature pair can compute the signing key s:

$$ightharpoonup s = \chi^{-1} \cdot (S - r) \pmod{n}$$
, where $r = H(\nu, M)$

Nonce generation type	Bias attacks	Side-channel and fault injection attacks
Deterministic: Pseudorandom, based on a secret key	Safe	More vulnerable
Purely random: Entropy independent of secret key	Vulnerable	Less vulnerable
Combined use: Randomness and pseudo-randomness	Safe	Less vulnerable

On non-verifiable determinism

Signature scheme	Is the signature algorithm deterministic?	Is the output signature verifiably deterministic?	
RSASSA-PKCS	Yes	Yes	
EdDSA	Yes	No	
Deterministic ECDSA	Yes	No	
RSA-PSS	No	No	
(Probabilistic) ECDSA	No	No	

Summary of conventional setting

- Schnorr-style signatures are well-known and been around for a while
- ► EdDSA Unforgeable?: **SUF** (the verification details matter)
- ► EdDSA Binding?: (the verification details matter)
 - ▶ if assumed pub-key bound ⇒ message binding
 - Otherwise no (missing check)
- EdDSA Deterministic?: non-verifiably
- Nonce implementation issues?:
 - Pseudorandom EdDSA: no bias, some susceptibility to side-channel attack
 - Purely random variant: inadvertent bias is catastrophic
 - Hybrid variant: best of both worlds

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Consideration:

Threshold approach — intuition

A linear secret-sharing of x is denoted as $[x] = \langle x_1, x_2, ..., x_n \rangle$. $x = \mathsf{Reconst}([x])$

(Simplification: Lagrange coefficients were omitted above. The above actually holds for Additive SS.)

Threshold approach — intuition

A linear secret-sharing of x is denoted as $[x] = \langle x_1, x_2, ..., x_n \rangle$. $x = \mathsf{Reconst}([x])$

The threshold signing follows trivially once having:

- \blacktriangleright Linear secret-sharing [s] of the private signing key s.
- Linear secret-sharing [r] of a random secret nonce r.

Phase	Conventional	Semi-honest threshold baseline
Key-Gen	$Q = s \cdot G$	$[Q] = [s] \bullet G;$
Commit nonce	$R = r \cdot G$	$[R] = [r] \cdot G$; then $R = \text{Reconst}([R])$
Compute challenge	$\chi = H(R, Q, M)$	Same as in conventional
Produce signature	$S = r + \chi \cdot s \pmod{n}$	$[S] = [r] + \chi \cdot [s] \pmod{n}$; then $S = \text{Reconst}([S])$
Verify signature	$S \cdot G = R + \chi \cdot Q$	Same as in conventional

(Simplification: Lagrange coefficients were omitted above. The above actually holds for Additive SS.)

Distributed key-generation (DKG)

Intuition: DKG with verifiable secret sharing [GJKR99]

Verifiable SS of some x: besides each private share x_j for party j, everyone sees "commitments" $X_i = x_i \bullet G$ of everyone's shares, i.e., $[x] \cdot G$

Approach (with a caveat):

- **Each** party P_i picks a random value x_i and secret-shares it with everyone $([x_i])$
- Each party decides their final share as the sum of all received shares
- Each party verifies everything (using the VSS verifiability)

More technicalities needed:

- ightharpoonup Prevent anyone from manipulating (bias) the final public key Q
- ► Ensure termination (prevent bias by abort)

Threshold Schnorr signing using a DKG-based approach

DKG = distributed key-generation.

Used by [SS01] for threshold Schnorr.

- ▶ Phase 0: The keygen phase has verifiably secret-shared a signing key s.
 - And everyone learns $[Q] = [s] \cdot G$, which determines Q.
- **Phase 1:** Use DKG to get a random nonce verifiable secret-sharing [r]
 - ▶ And everyone learns $[R] = [r] \cdot G$
- ▶ **Phase 2:** Signature-shares and reconstruction:
 - **Each** party communicates their signature share: $S_i = r_i + \chi \cdot s_i$
 - ▶ Someone combines the shares $\sigma = (Recons([R]), Recons([S]))$

An attempt at threshold Deterministic

Naive solution:

- Every party P_i uses a deterministic nonce contribution $r_i = H(\nu, M)$.
- ▶ Final nonce commitment is R = Reconst([r] G)

Problem:

▶ Malicious P_j varies their nonce contribution r_j , to affect R and thus $\chi = H(R, Q, M)$

Key recovery pitfall — After just two signings of the same message M:

- ► Honest signature-share 1st time: $S_i = r_i + \chi \cdot s_i$
- ► Honest signature-share 2ns time: $S_i^* = r_i + \chi * \cdot s_i$
- Adversary recovers $s_i = (\chi \chi^*) \cdot (S_i S_i^*)$

Threshold Deterministic Signatures

- ► MPC-based nonce computation
 - ► Generic MPC for distributed computation of SHA512-based nonce
 - Distributed hashing using an MPC-friendly hash
- Local deterministic contributions (per party), ZK-proven correct
 - PRF based on AES (less ZKP-unfriendly than SHA512)
 - ZKP friendly PRF

Threshold Deterministic Signatures

- ► MPC-based nonce computation
 - Generic MPC for distributed computation of SHA512-based nonce
 - Distributed hashing using an MPC-friendly hash
- ▶ Local deterministic contributions (per party), ZK-proven correct
 - PRF based on AES (less ZKP-unfriendly than SHA512)
 - ZKP friendly PRF

Reference	Func- tionally equiva- lent?	EdDSA Inter- change- able?	Fixed public key?	Determing Per subset of signatories	Across reshar- ings	Some gadgets
[BST21, §5]	Yes	Yes	Yes	Yes	Yes	MPC gadgets
[BST21, §6]	No	Yes	Yes	Yes	Yes	MPC-friendly hash
[GKMN21]	No	Yes	Yes	Yes	No	ZKGC, COT
[NRSW20]	No	Yes	No	Yes	N/A	ZKP-friendly PRF

Threshold Probabilistic Signatures

Classical approaches (more rounds): DKG-based

Recent efforts (lower number of rounds):

- ▶ k-sum attack [DEFKLNS19] broke older 2-round protocols (concurrent setting)
 - Malicious P_i in execution k is last to contribute R_i^k , affecting R^k and $\chi^k = H(R^k, Q, M^k)$ to achieve $R^* = \sum_k R^k$ such that $\chi^* = \sum_k \chi^k$ (k-sum problem)
- ▶ 2 rounds game-based UF: prevent k-sum by using multiple nonce-contributions and nonce-binding to message [KG21; NRS21; AB21; CKM21]
- **3 rounds simulatable:** directly prevents manipulation of nonce-commitment R (with extra commitment round) [Lin22]

Threshold comparison (informal)

Signature	Nonce	Attack of	Informal assessment		
mode	generation	Concern	Conventional	Threshold	
Deterministic	Pseudorandom	Bias	Safe	Safe	
Beterministic	rseddorundom	Side channel	More vulnerable	Safer	
Probabilistic	Randomized	Bias Vulnerable		Safer	
Trootomstic	Randomized	Side channel	Less vulnerable	Safer	
	Hybrid	Bias	Safe	Safe	
	11, 0110	Side channel	Less vulnerable	Safer	

(Other aspects to consider: efficiency, assumptions, threshold parameters, ...)

Outline

1. Conventional EdDSA/Schnorr

2. Threshold signatures

3. Considerations

Draft IR 8214B

- Analyzes the properties of conventional EdDSA
- Distinguishes various approaches for threshold interchangeable schemes w.r.t. EdDSA verification. Compares probabilistic vs. deterministic.
- ▶ Identifies aspects that would benefit from more attention (security formulation, WBBR parties, interfaces, adaptive corruptions, ...)
- Some considerations are generic to other schemes
- We expect to receive technical feedback

Developments

An attack and various followup threshold protocols have appeared in the past few years

What would be good to learn with the community:

- Detailed security formulations, technical descriptions, reference implementations
- ▶ More emphasis on SUF (some works have only looked at UF)
- ► More explicit addressing of well behaved parties with bad randomness (WBBR)
- Concerns with manipulation of nonce commitment?
- Actual implementations of broadcast and agreement

Aim: Enable develop recom./guidelines about threshold schemes (not concrete standards)

Thank you for your attention!

Questions?

Notes on Threshold EdDSA/Schnorr Signatures
Upcoming Draft NIST IR 8214B

(This slide-deck is still a work in progress)

References

[AB21]

[BCJZ21]

[BDLSY11]

	p. 8).
[CD95]	Ronald Cramer and Ivan Damgård. "Secure Signature Schemes based on Interactive Protocols". In: Advances in Cryptology — CRYPTO' 95. Springer Berlin Heidelberg, 1995. DOI: 10.1007/3-540-44750-4_24. Also at BRICS Report Series, 1(29), 1994. DOI:10.7146/brics.v1i29.21637 (Cited on pp. 12, 13).
[CGN20]	Konstantinos Chalkias, François Garillot, and Valeria Nikolaenko. "Taming the Many EdDSAs". In: International Conference on Security Standardisation Research. Springer, 2020. DOI: 10.1007/978-3-030-64357-7_4. Also at ia.cr/2020/1244 (Cited on p. 14).
[CKM21]	Elizabeth Crites, Chelsea Komlo, and Mary Maller. How to Prove Schnorr Assuming Schnorr: Security of Multi- and Threshold Signatures. Cryptology ePrint Archive, Report ia.cr/2021/1375. 2021 (Cited on p. 28).
[DEFKLNS19]	Manu Drijvers, Kasra Edalatnejad, Bryan Ford, Elike Kiltz, Julian Loss, Gregory Neven, and Igors Stepanovs. "On the Security of Two-Round Multi-Signatures". In: 2019 IEEE Symposium on Security and Privacy (SP) (2019). DOI: 10.1109/SP.2019.00050. Also at ia.cr/2018/417 (Cited on p. 28).
[GJKR99]	Rosario Gennaro, Stanisław Jarecki, Hugo Krawczyk, and Tal Rabin. "Secure Distributed Key Generation for Discrete-Log Based Cryptosystems". In: Advances in Cryptology — EUROCRYPT'99. Springer-Verlag, 1999. DOI: 10.1007/3-540-48910-X_21. See also J. Cryptology 20, pp. 51-83, 2007. DOI:10.1007/s00145-006-0347-3 (Cited on p. 23).
[GMR88]	Shafi Goldwasser, Silvlo Micali, and Ronald L. Rivest. "A Digital Signature Scheme Secure Against Adaptive Chosen-Message Attacks". In: SIAM Journal on Computing 17.2 (1988). DOI: 10.1137/0217017 (Cited on pp. 12, 13).
[KG21]	Chelsea Komlo and Ian Goldberg. "FROST: Flexible Round-Optimized Schnorr Threshold Signatures". In: (2021). DOI: 10.1007/978-3-030-81652-0_2. Also at ia.cr/2020/852 (Cited on p. 28).
[Lin22]	Yehuda Lindell. Simple Three-Round Multiparty Schnorr Signing with Full Simulatability. Cryptology ePrint Archive Report ia.cr/2022/374. 2022 (Cited on p. 28).
[NRS21]	Jonas Nick, Tim Ruffing, and Yannick Seurin. "MuSig2: Simple Two-Round Schnorr Multi-signatures". In: Advances in Cryptology — CRYPTO 2021. Springer International Publishing, 2021. DOI: 10.1007/978-3-030-84242-0_8. Also at ia.cr/2020/1261 (Cited on p. 28).
[RFC 8032]	S. Josefsson and I. Liusvaara. "Edwards-Curve Digital Signature Algorithm (EdDSA)". In: RFC 8032. Request for Comments (January 2017). Errata exists. DOI: 10.17487/RFC8032.
[Sch90]	C. P. Schnorr. "Efficient Identification and Signatures for Smart Cards". In: Advances in Cryptology — CRYPTO' 89 Proceedings. Springer New York, 1990. DOI: 10.1007/0-387-34805-0_22. See also J. Cryptology 4, pp. 161–174, 1991, DOI:10.1007/BF00196725 (Cited on p. 8).
[SS01]	Douglas R. Stinson and Reto Strobl. "Provably Secure Distributed Schnorr Signatures and a (t, n) Threshold Scheme for Implicit Certificates". In: Information Security and Privacy. ACISP 2001. Springer Berlin Heidelberg, 2001. DOI: 10.1007/3-540-47719-5_33 (Cited on p. 24).

10 1007/978-3-030-84242-0 7 Also at ia cr/2020/1245 (Cited on p. 28)

10.1109/SP40001.2021.00042. Also at ja.cr/2020/823 (Cited on p. 14).

Handan Kiling Albert and Jeffrey Burdges, "Two-round trip schoor; multi-signatures via delinearized witnesses" In: Advances in Cryptology — CRYPTO 2021 Springer, 2021 DOI:

Jacqueline Brendel, Cas Cremers, Dennis Jackson, and Mang Zhao. "The Provable Security of Ed25519: Theory and Practice". In: Symposium on Security and Privacy (SP) (2021). DOI:

Daniel J. Bernstein, Niels Duif, Tanja Lange, Peter Schwabe, and Bo-Yin Yang, "High-Speed High-Security Signatures". In: Cryptographic Hardware and Embedded Systems — CHES 2011. Springer Berlin Heidelberg, 2011. DOI: 10.1007/978-3-642-23951-9. 9. Also at Journal of Cryptographic Engineering, vol. 2, pp. 77-89 (2012), 10.1007/s13389-012-0027-1. Also at ia.cr/2011/368 (Cited on

EdDSA modes (and variants)

Table 6. EdDSA variants

Type	Standard	Mode μ	κ	$b = \frac{d}{d} $	s v	${\tt GenNonce}\ {\it r}$	Challenge χ
Det.	EdDSA	Ed25519	128	256	$H_0(d)$	$H_0(\mathbf{v} M)$	$H_0(R Q M)$
		Ed448	224	456	$H_1(\mathbf{d})$	$H_1(E_{4,0}(ctx) \mathbf{v} M)$	$H_1(E_{4,0}(ctx) R Q M)$
	HashEdDSA	Ed25519ph	128	256	$H_0(\mathbf{d})$	$H_0(E_{2,1}(ctx) \mathbf{v} H_0(M))$	$H_0(E_{2,1}(ctx) \mathbf{R} \mathbf{Q} H_0(M))$
		Ed448ph	224	456	$H_1(\mathbf{d})$	$H_1(E_{4,1}(ctx) \mathbf{v} H_2(M))$	$H_1(E_{4,1}(ctx) \mathbf{R} \mathbf{Q} H_2(M))$
Туре	Variation	Mode μ	κ	b = d	s v	GenNonce r	Challenge χ
Prob.	Random	_	_		_	\leftarrow \mathbb{Z}_q	_
	Hybrid	_	_	_	_	$H(\mathbf{v}, rand, f(M))$	_

Legend: See code Some symbols are better contextualized in Fig. 3. Det. (deterministic). Prob. (probabilistic). s, v (first and second halves, respectively, of Hash(d), also denoted as 1st and 2nd digests of d). $E_{i,j}(...)$ (encoding function, defined in FIPS 186 as domi(j,...), where i is 2 or 4, corresponding to the Ed25519 or Ed448 curves, and j is 1 or 0, corresponding to whether or not it is a "pre-hash" mode). H (some cryptographic hash function or extendable output function); H_0 (SHA-512); H_1 (SHAKE256-length-912); H_2 (SHAKE256-length-512); t_2 (secret randomness or any other secret material). The four deterministic modes (Det.) are based on Draft FIPS 186-5. The two probabilistic variants (Prob.) produce signatures interchangeable w.r.t. EdDSA verification.